PARITY BIASES IN PARTITIONS AND RESTRICTED PARTITIONS

Koustav Banerjee¹, Sreerupa Bhattacharjee², Manosij Ghosh Dastidar³, Pankaj Jyoti Mahanta⁴, and Manjil P. Saikia⁵

¹Johannes Kepler University, koustav.banerjee@risc.uni-linz.ac.at,

Parity bias

The tendency of partitions to have more parts of a particular parity than the other is often called *parity bias*.

> Let $q_o(n)$ (resp. $q_e(n)$) denote the number of partitions of n with more odd parts (resp. even parts) than even parts (resp. odd parts) where the smallest part is at least 2. Following are the partitions of 8 where the smallest part is at least 2:

$$8, 6+2, 5+3, 4+4, 4+2+2$$

$$3 + 3 + 2, 2 + 2 + 2 + 2.$$

So, $q_o(8) = 2$, and $q_e(8) = 5$. That is $q_o(8) < q_e(8)$. In fact, $q_o(n) < q_e(n)$ for all n > 7.

Definitions

Example:

A partition λ of a non-negative integer n is an integer sequence $(\lambda_1, \ldots, \lambda_\ell)$ such that $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0$ and $\sum_{i=1}^{\ell} \lambda_i = n$. We say that λ is a partition of n, denoted by $\lambda \vdash n$ and $\sum_{i=1}^{\ell} \lambda_i = n$. The set of partition of n is denoted by P(n) and |P(n)| = p(n). For $\lambda \vdash$ n, we define $a(\lambda)$ to be the largest part of λ , $\ell(\lambda)$ to be the total number of parts of λ and $\operatorname{mult}_{\lambda}(\lambda_i) := m_i$ to be the multiplicity of the part λ_i in λ . We also use $\lambda = (\lambda_1^{m_1} \dots \lambda_\ell^{m_\ell})$ as an alternative notation for partition. For $\lambda \vdash n$ with $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ and $\mu \vdash m$ with $\mu =$ $(\mu_1, \ldots, \mu_{\ell'})$, define the union $\lambda \cup \mu \vdash m + n$ to be the partition with parts $\{\lambda_i, \mu_j\}$ arranged in non-increasing order. For a partition $\lambda \vdash n$, we split λ into λ_e and λ_o respectively into even and odd parts; i.e., $\lambda = \lambda_e \cup \lambda_o$. We denote by $\ell_e(\lambda)$ (resp. $\ell_o(\lambda)$) to be the number of even parts (resp. odd parts) of λ and $\ell(\lambda) = \ell_e(\lambda) + \ell_o(\lambda)$.

²University of Lethbridge, bhatttacharjee.sreerupa@gmail.com,

³Technische Universität Wien, gdmanosij@gmail.com,

More definitions

 $D(n) := \{\lambda \in P(n) : \operatorname{mult}_{\lambda}(\lambda_i) = 1 \text{ for } a\}$ $P_e(n) := \{ \lambda \in P(n) : \ell_e(\lambda) > \ell_o(\lambda) \},\$ $P_o(n) := \{ \lambda \in P(n) : \ell_o(\lambda) > \ell_e(\lambda) \},\$ $D_e(n) := P_e(n) \cap D(n),$ $D_o(n) := P_o(n) \cap D(n),$ $Q(n) := \{ \lambda \in P(n) : \lambda_i \neq 1 \text{ for all } i \},\$ $Q_e(n) := \{ \lambda \in Q(n) : \ell_e(\lambda) > \ell_o(\lambda) \},\$ $Q_o(n) := \{ \lambda \in Q(n) : \ell_o(\lambda) > \ell_e(\lambda) \},\$ $DQ_e(n) := Q_e(n) \cap D(n),$ and $DQ_o(n) := Q_o(n) \cap D(n)$. For a nonempty set $S \subsetneq \mathbb{Z}_{>0}$, $P_e^S(n) := \{\lambda \in P_e(n) : \lambda_i \notin S\}$ and $P_o^S(n) := \{\lambda \in P_o(n) : \lambda_i \notin S\}.$

For all the sets defined above, their cardinalitie be denoted by the lower case letters. For inst $|P_e(n)| = p_e(n), |DQ_e(n)| = dq_e(n)$ and so on.

Theorems

We prove the following theorems combinatorially: **Theorem 1** (Theorem 1, [2]). For all positive in $n \neq 2$, we have $p_o(n) > p_e(n)$.

Theorem 2 (Conjectured, [2]). For all positive in n > 19, we have $d_o(n) > d_e(n)$.

Theorem 3. For all positive integers n > 7, we $q_o(n) < q_e(n).$

Theorem 4. For all $n \ge 1$ we have $p_o^{\{2\}}(n) > p_e^{\{2\}}(n)$ **Theorem 5.** If $S = \{1, 2\}$, then for all integers we have $p_o^S(n) > p_e^S(n)$.

2020 Mathematics Subject Classification. 05A17, 05A20, 11P83. Key words and phrases. Combinatorial inequalities, Partitions, Parity of parts, Restricted Partitions.

⁴Gonit Sora, pankaj@gonitsora.com,

The fundamental principle behind principle behave and
$$C_c^0(n) := \{\lambda \in P_c(n) : \ell_c(\lambda) - \ell_o(n) \in C_c^0(n) = \{\lambda \in P_c(n) : \ell_c(\lambda) - \ell_o(n) = \ell_c(n) \in C_c^0(n) = \ell_c(\lambda) = 0, \dots \in P_c(n) \setminus \overline{G_c}(n) =$$

[2] Byungchan Kim, Eunmi Kim, and Jeremy Lovejoy. Parity bias in partitions. European Journal of *Combinatorics*, 89:103159, 2020. doi: 10.1016/j.ejc.2020.103159.

⁵Cardiff University manjil@saikia.in

roofs of Theorems

- $(\lambda) = 1 \text{ and } a(\lambda) \equiv 0 \pmod{2},$
- $(\lambda) = 1 \text{ and } a(\lambda) \equiv 1 \pmod{2},$ $(\lambda) \ge 2\},$
- igth of partition as $G_e(n) = G_{e,0}(n) \cup$ $\equiv 0 \pmod{2}, G_{e,1}(n) = \{\lambda \in G_e(n) :$ $\cup G_{e,1}(n) \cup G_e^0(n)$. Therefore, $\mathcal{L}_{e}^{0}(n): 0 \leq \lambda_{3} \leq 2\}.$ efining maps $f|_{G_{e,0}(n)} = f_1, f|_{G_{e,1}(n)} = f_2$ etive with the following properties
- Then we will choose a subset $P_o(n) \subseteq$ (n)|.

 $> dq_e(2m), and$ $q_e(2m+1).$

 $> p_e^{\{k\}}(n) \text{ and } p_e^{\{1,k\}}(n) > p_o^{\{1,k\}}(n), \text{ for }$ epending on k. Moreover, it would be k) asymptotically.

osh Dastidar, Pankaj Jyoti Mahanta, and Manjil P tions. European Journal of Combinatorics, 103: