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Parity bias

The tendency of partitions to have more parts of a par-
ticular parity than the other is often called parity bias.

Example:

Let qo(n) (resp. qe(n)) denote the num-
ber of partitions of n with more odd parts
(resp. even parts) than even parts (resp.
odd parts) where the smallest part is at
least 2. Following are the partitions of 8
where the smallest part is at least 2:

8, 6 + 2, 5 + 3, 4 + 4, 4 + 2 + 2,

3 + 3 + 2, 2 + 2 + 2 + 2.

So, qo(8) = 2, and qe(8) = 5. That is
qo(8) < qe(8). In fact, qo(n) < qe(n) for
all n > 7.

Definitions

A partition λ of a non-negative integer n is an integer
sequence (λ1, . . . , λℓ) such that λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0
and

∑ℓ
i=1 λi = n. We say that λ is a partition of n,

denoted by λ ⊢ n and
∑ℓ

i=1 λi = n. The set of partition
of n is denoted by P (n) and |P (n)| = p(n). For λ ⊢
n, we define a(λ) to be the largest part of λ, ℓ(λ) to
be the total number of parts of λ and multλ(λi) := mi

to be the multiplicity of the part λi in λ. We also use
λ = (λm1

1 . . . λmℓ

ℓ ) as an alternative notation for partition.
For λ ⊢ n with λ = (λ1, . . . , λℓ) and µ ⊢ m with µ =
(µ1, . . . , µℓ′), define the union λ ∪ µ ⊢ m + n to be the
partition with parts {λi, µj} arranged in non-increasing
order. For a partition λ ⊢ n, we split λ into λe and λo

respectively into even and odd parts; i.e., λ = λe∪λo. We
denote by ℓe(λ) (resp. ℓo(λ)) to be the number of even
parts (resp. odd parts) of λ and ℓ(λ) = ℓe(λ) + ℓo(λ).

More definitions

D(n) := {λ ∈ P (n) : multλ(λi) = 1 for all i},
Pe(n) := {λ ∈ P (n) : ℓe(λ) > ℓo(λ)},
Po(n) := {λ ∈ P (n) : ℓo(λ) > ℓe(λ)},
De(n) := Pe(n) ∩D(n),

Do(n) := Po(n) ∩D(n),

Q(n) := {λ ∈ P (n) : λi ̸= 1 for all i},
Qe(n) := {λ ∈ Q(n) : ℓe(λ) > ℓo(λ)},
Qo(n) := {λ ∈ Q(n) : ℓo(λ) > ℓe(λ)},

DQe(n) := Qe(n) ∩D(n),

and DQo(n) := Qo(n) ∩D(n).

For a nonempty set S ⊊ Z≥0,

P S
e (n) := {λ ∈ Pe(n) : λi /∈ S}

and P S
o (n) := {λ ∈ Po(n) : λi /∈ S}.

For all the sets defined above, their cardinalities will
be denoted by the lower case letters. For instance,
|Pe(n)| = pe(n), |DQe(n)| = dqe(n) and so on.

Theorems

We prove the following theorems combinatorially:

Theorem 1 (Theorem 1, [2]). For all positive integers
n ̸= 2, we have po(n) > pe(n).

Theorem 2 (Conjectured, [2]). For all positive integers
n > 19, we have do(n) > de(n).

Theorem 3. For all positive integers n > 7, we have
qo(n) < qe(n).

Theorem 4. For all n ≥ 1 we have p
{2}
o (n) > p

{2}
e (n).

Theorem 5. If S = {1, 2}, then for all integers n > 8,
we have pSo (n) > pSe (n).
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The fundamental principle behind proofs of Theorems

To prove the Theorem 1, we consider

G0
e(n) := {λ ∈ Pe(n) : ℓe(λ)− ℓo(λ) = 1 and a(λ) ≡ 0 (mod 2)},

G0
e(n) := {λ ∈ G0

e(n) : λ3 ≥ 3},
G1

e(n) := {λ ∈ Pe(n) : ℓe(λ)− ℓo(λ) = 1 and a(λ) ≡ 1 (mod 2)},
G2

e(n) := {λ ∈ Pe(n) : ℓe(λ)− ℓo(λ) ≥ 2},
and Ge(n) := G1

e(n) ∪ G2
e(n).

We split the set Ge(n) into the parity of length of partition as Ge(n) = Ge,0(n) ∪
Ge,1(n) with Ge,0(n) = {λ ∈ Ge(n) : ℓ(λ) ≡ 0 (mod 2)}, Ge,1(n) = {λ ∈ Ge(n) :

ℓ(λ) ≡ 1 (mod 2)} and let Ge(n) := Ge,0(n) ∪ Ge,1(n) ∪G0
e(n). Therefore,

Pe(n) \Ge(n) = {λ ∈ G0
e(n) : 0 ≤ λ3 ≤ 2}.

We construct a map f : Ge(n) → Po(n) by defining maps f |Ge,0(n) = f1, f |Ge,1(n) = f2
and f |G0

e(n)
= f3 such that {fi}1≤i≤3 are injective with the following properties

•f1(Ge,0(n)) ∩ f2(Ge,1(n)) = ∅,
•f1(Ge,0(n)) ∩ f3(G0

e(n)) = ∅, and
•f2(Ge,1(n)) ∩ f3(G0

e(n)) = ∅,
so as to conclude the map f is injective. Then we will choose a subset Po(n) ⊊
Po(n) \ f (Ge(n)) with |Po(n)| > |Pe(n) \Ge(n)|.

Problems

Problem 1. For all m > 6 we have dqo(2m) > dqe(2m), and

dqo(2m + 1) < dqe(2m + 1).

Problem 2. For all k > 2 we have p
{k}
o (n) > p

{k}
e (n) and p

{1,k}
e (n) > p

{1,k}
o (n), for

all n > N(k), for some constant N(k), depending on k. Moreover, it would be
worthwhile to understand the threshold N(k) asymptotically.
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